
Document No.: AN1101

www.geehy.com Page 1

Application Note

Application Note

Document No.: AN1101

APM32F4xx_CRC Application Note

Version: V1.0

Document No.: AN1101

www.geehy.com Page 2

 Introduction

This application note provides a guide on how to configure and apply CRC

peripheral on APM32F4xx series and introduces the CRC parameter model and

CRC algorithm.

Document No.: AN1101

www.geehy.com Page 3

Contents
 Introduction ... 2

 CRC Introduction .. 4

 CRC parameter model .. 4

 CRC algorithm ... 5

 Introduction to APM32F4XX CRC .. 6

 APM32F4XX CRC parameter model .. 6

 Hardware implementation advantages ... 7

 APM32F4XX CRC Application Routine .. 8

 Software design process ... 8

 Software implementation .. 9

 Revision history .. 12

Document No.: AN1101

www.geehy.com Page 4

 CRC Introduction

The full name of CRC is Cyclic Redundancy Check. This unit can get 32-bit

CRC computing result by calculating the input data through a fixed polynomial

calculation, and is mainly used to detect or verify the correctness and integrity of

the data after transmission or saving.

 CRC parameter model

Usually, a parameter model needs to be known in order to calculate the accurate

CRC value. A complete CRC parameter model should include the following

information: POLY, WIDTH, INIT, REFIN, REFOUT and XOROUT. Usually, if only

one polynomial is provided without specifying other parameters, the initialization

value INIT is 0x00, the input inversion REFIN is false, the output inversion

REFOUT is false, and the XOR output XOROUT is 0x00. After inputting the

number that needs to be checked, calculate it using the CRC algorithm according

to the parameter model and the check value can be obtained. Where:

1) POLY: Hexadecimal polynomial, but the most significant bit 1 is omitted. For

example, x8+x4+x3+x+1, the binary is 1 0001 1011, the most significant bit 1 is

omitted, and it is converted to the hexadecimal 0x1B.

2) WIDTH: The generated CRC data bit width; for example, the generated CRC

of CRC-16 is 16 bits.

3) Name: The name of parameter model.

4) INIT: represents the initial value of CRC, which remains the same as the

WIDTH bit width.

5) REFIN: Its value is either false or true. False means that the original data does

not need to be flipped before calculation; while true means that the original data

needs to be flipped. Take the original data: 0x5D=0101 1101 as an example. If

REFIN is true, it will be 1011 1010=0xBA after flipping.

6) REFOUT: true or false, which is a parameter that specifies whether to flip the

CRC value obtained after the operation is completed.

7) XOROUT: Perform XOR operation on the calculation result to obtain the final

CRC value, ensuring that its bit width is the same as WIDTH.

2.1.1 Common CRC parameter models

The commonly used parameter models of CRC and the application scenarios

are shown in Table 1.

Table 1 Introduction to Commonly Used CRC

Name of CRC

algorithm

Polynomial

formula/hexadecimal

polynomial

Hexadecimal

polynomial

Input value

inversion

Output

value

inversion

CRC-5/ITU 𝑋5 + 𝑋3 +𝑋 + 1 15 true true

Document No.: AN1101

www.geehy.com Page 5

Name of CRC

algorithm

Polynomial

formula/hexadecimal

polynomial

Hexadecimal

polynomial

Input value

inversion

Output

value

inversion

CRC-5/ITU 𝑋5 + 𝑋3 +𝑋 + 1 15 true true

CRC-5/USB 𝑋5 + 𝑋2 + 1 05 true true

CRC-7/MMC 𝑋7 + 𝑋3 + 1 09 false false

CRC-8/ITU 𝑋8 + 𝑋7 + 𝑋3 + 𝑋2 + 1 07 false false

CRC-16/USB 𝑋16 + 𝑋12 + 𝑋5 + 1 8005 true True

CRC-

16/MODBUS
𝑋16 + 𝑋12 + 𝑋5 + 1 8005 true true

CRC-32/

MPEG-2

𝑋32 + 𝑋26 + 𝑋23 +𝑋22

+𝑋16 + 𝑋12 + 𝑋11 + 𝑋10

+𝑋8 + 𝑋7 + 𝑋5 + 𝑋4

+ 𝑋2

+𝑋 + 1

04C11DB7 false false

CRC-32

𝑋32 + 𝑋26 + 𝑋23 +𝑋22

+𝑋16 + 𝑋12 + 𝑋11 + 𝑋10

+𝑋8 + 𝑋7 + 𝑋5 + 𝑋4

+ 𝑋2

+𝑋 + 1

04C11DB7 true true

 CRC algorithm

The concept of CRC is to add a check code after the data to be transmitted to

generate a new transmission frame and transmit it to the receiving end. Assuming

that the data to be transmitted is K bits and the check code added at the end is R

bits, the generated new frame is K+R bits. After receiving the data at the receiving

end, verify whether the data transmission is correct by comparing with the check

code. This comparison method requires that the receiving end and the

transmitting end determine a common divisor. Before transmitting the data frame,

perform remainder processing by adding a number. When the data transmission

is correct, the CRC calculation result should have no remainder; otherwise, the

calculation result has a remainder, which indicates that an error occurs in the

transmission process.

The specific procedure is as follows:

Document No.: AN1101

www.geehy.com Page 6

1) Before communication, the transmitting end and the receiving end shall first

agree on the value of the polynomial, the divider P. The number of digits of the

divisor P should be the number of digits of check code plus 1.

2) The transmitting end shifts the original data left for R bits by adding R zeros

after the original K-bit data.

3) Perform module-2 division operation. Divide the data with a length of K+R by

P to make loop calculation, and stop the calculation when the order of the

remainder is less than R. The obtained remainder is an additional check code.

When the length is less than R bit, zeros shall be supplemented in front.

4) The transmitting end appends the check code of R bit to the original data,

and transmits the entire data with check code to the receiver.

5) After receiving the data, the receiver uses the divisor P to perform division

operation on the data using modulo-2 division. When there is a remainder, it

proves that an error occurs in the transmission process; on the contrary, the

transmission is normal.

Below is an application example of CRC-8 polynomial 0x07.

1) For CRC-8 polynomial 0x07, the source data is 10101110; according to the

agreed polynomial, we initialize the CRC check value to 0x00.

2) Add 8 zeros to the end of the data, namely, shift the data left by 8 bits, and

obtain: 1010111000000000

3) Take the front 8-bit data (10101110), perform XOR operation with polynomial

0x07 and obtain 11001010.

4) Shift the result left by 1 bit, discard the most significant bit, and obtain

10010100. Repeat the above steps, take 8-bit data from the results in sequence

to perform XOR operation with 0x07, and then shift left until the remaining data

bits are less than 8. The final remainder is 00101011. This 00101011 is the

calculated CRC check bit.

5) Append it to the end of the original data to get the transmitted data:

1010111000101011. After receiving the data, the receiving end also performs

CRC check.

6) Perform module-2 division operation on the received data according to the

same process until the final obtained remainder is 0, indicating that no error

occurred. If the remainder is not 0, it indicates an error.

 Introduction to APM32F4XX CRC

 APM32F4XX CRC parameter model

The built-in hardware CRC calculation module of APM32 used is CRC-32

Document No.: AN1101

www.geehy.com Page 7

model, and its polynomial is 0x4C11DB7——X32 + X26 + X23 + X22 + X16 +

X12 + X11 + X10 + X8 + X7 + X4 + X2 + X +1.

According to the model parameter analysis mentioned in 错误!未找到引用源。

above, the data bit width of APM32 CRC is 32 bits, the hexadecimal polynomial

is 0x4C11DB7, INIT=0xFFFFFFFF, REFIN=false, REFOUT=false,

XOROUT=0x00000000.

 Hardware implementation advantages

The built-in hardware CRC calculation module of APM32 brings the following

advantages when implementing CRC using hardware:

1) High-speed computing: For the hardware implementation of CRC, the special

circuits and parallel computing can be used to achieve fast CRC computing.

Compared with software implementation, hardware can complete CRC

computing within a few clock cycles, to provide higher processing speed.

2) Low power consumption: Due to the use of special circuits to perform CRC

computing, hardware implementation can reduce power consumption through

circuit design optimization. Compared with using loops for CRC computing in

software, hardware implementation can save a lot of energy.

3) Occupation of few resources: Software implementation of CRC may require

large memory and processor resources to perform complex calculation. However,

hardware implementation usually only requires some logic gates and registers,

occupying few resources, and is particularly suitable for embedded systems with

limited resources.

4) Real-time performance: The CRC implemented by hardware can perform

continuous computation in real-time data stream without delay or interrupt. This

is very important for applications that require fast processing of data streams,

such as real-time transmission and communication protocols.

5) Strong anti-interference capability of hardware: CRC implemented by

hardware usually can better resist noise and interference, which is because it can

use differential signals and physical layer technologies to improve the anti-

interference capability. This is very important for the reliability and error detection

of data transmission.

In summary, the hardware implementation of CRC has such advantages as high-

speed computing, low power consumption, occupation of less resources, good

real-time performance, and strong anti-interference capability. So the hardware

implementation has more advantages in applications that require high efficiency,

reliability, and real-time performance.

Document No.: AN1101

www.geehy.com Page 8

 APM32F4XX CRC Application Routine

 Software design process

The standard check value has been calculated based on data in the APM32F4XX

routine. The webpage calculation process is shown in Figure 3, and the calculated

standard check value is 0x379E9F06. The data string to be checked is stored in

an array for CRC check. When the output check value is equal to the standard

check value, it proves that the transmission is normal; on the contrary, if they are

different, it proves that the data transmission is wrong.

Figure 3 Calculation of Standard Check Value

The CRC computing unit contains a 32-bit data register (CRC_DATA) for data

input and storing CRC calculation results. The calculation time is four AHB clock

cycles. Every time a new data is written, the result will be a combination of the

last calculation result and the new calculation result (operation is performed on

the entire word). Write operation of CPU will be suspended during calculation,

so that "back-to-back" write or continuous "read-write" operation can be

performed on the register CRC_DATA. To calculate the CRC of supporting data,

operate according to the following steps:

1) Enable CRC peripheral clock through RCC peripheral.

2) Configure the initial CRC value register (CRC_DATA) to set the CRC

data register to the initial

CRC value.

Check files

Data needing to be checked:

The input data is hexadecimal, for example: 31 32 33 34

Parameter model NAME:

Width:

Polynomial POLY (Hex):

Initial value INIT (Hex):

Result XOR value XOROUT (Hex):

For example: 3065

For example: FFFF

For example: 0000

Input data inversion (REFIN) Output data inversion (REFOUT)

Calculate Clear

Check calculation results (Hex):

Check calculation results (Bin):

High bit is on the left and low bit is on the right. Please pay attention to the sequence of high

and low bits during use!!!

Copy

Copy

Document No.: AN1101

www.geehy.com Page 9

3) Reset the CRC peripheral through the Reset bit in the CRC control

register (CRC_CTRL).

4) Set the data to the CRC data register.

5) Read the content of the CRC data register and it is the calculated CRC

value.

The software programming flow chart is as follows:

Figure 4 CRC Software Programming Flow Chart

 Software implementation

4.2.1 Definitions of CRC parameters

Define the array to store the data to be checked, and define the 32-bit integer

variable to store the CRC output check value; complete the serial port

initialization and related parameter setting: set the baud rate to 115200, the

check bit to 0, and the stop bit to 1. The related codes are as follows:

Enable CRC
peripheral clock

Read data Write data

Output check
value

Document No.: AN1101

www.geehy.com Page 10

static const uint32_t aDataBuffer[BUFFER_SIZE] =

{

0x00001021, 0x20423063, 0x408450a5, 0x60c670e7, 0x9129a14a,

0xb16bc18c, 0xd1ade1ce, 0xf1ef1231, 0x32732252, 0x52b54294,

0x72f762d6, 0x93398318, 0xa35ad3bd, 0xc39cf3ff, 0xe3de2462, 0x34430420,

0x64e674c7, 0x44a45485, 0xa56ab54b, 0x85289509, 0xf5cfc5ac,

0xd58d3653, 0x26721611, 0x063076d7, 0x569546b4, 0xb75ba77a,

0x97198738, 0xf7dfe7fe, 0xc7bc48c4, 0x58e56886, 0x78a70840,

0x18612802, 0xc9ccd9ed, 0xe98ef9af, 0x89489969, 0xa90ab92b,

0x4ad47ab7, 0x6a961a71, 0x0a503a33, 0x2a12dbfd, 0xfbbfeb9e,

0x9b798b58, 0xbb3bab1a, 0x6ca67c87, 0x5cc52c22, 0x3c030c60,

0x1c41edae, 0xfd8fcdec, 0xad2abd0b, 0x8d689d49, 0x7e976eb6,

0x5ed54ef4, 0x2e321e51, 0x0e70ff9f, 0xefbedfdd, 0xcffcbf1b, 0x9f598f78,

0x918881a9, 0xb1caa1eb, 0xd10cc12d, 0xe16f1080, 0x00a130c2,

0x20e35004, 0x40257046, 0x83b99398, 0xa3fbb3da, 0xc33dd31c,

0xe37ff35e, 0x129022f3, 0x32d24235, 0x52146277, 0x7256b5ea,

0x95a88589, 0xf56ee54f, 0xd52cc50d, 0x34e224c3, 0x04817466,

0x64475424, 0x4405a7db, 0xb7fa8799, 0xe75ff77e, 0xc71dd73c,

0x26d336f2, 0x069116b0, 0x76764615, 0x5634d94c, 0xc96df90e,

0xe92f99c8, 0xb98aa9ab, 0x58444865, 0x78066827, 0x18c008e1,

0x28a3cb7d, 0xdb5ceb3f, 0xfb1e8bf9, 0x9bd8abbb, 0x4a755a54,

0x6a377a16, 0x0af11ad0, 0x2ab33a92, 0xed0fdd6c, 0xcd4dbdaa,

0xad8b9de8, 0x8dc97c26, 0x5c644c45, 0x3ca22c83, 0x1ce00cc1, 0xef1fff3e,

0xdf7caf9b, 0xbfba8fd9, 0x9ff86e17, 0x7e364e55, 0x2e933eb2, 0x0ed11ef0

};

uint32_t uCRCValue = 0;

USART_Config_T usartConfigStruct; /* USART configuration */

USART_ConfigStructInit(&usartConfigStruct); usartConfigStruct.baudRate =

115200;

usartConfigStruct.mode = USART_MODE_TX_RX; usartConfigStruct.parity =

USART_PARITY_NONE; usartConfigStruct.stopBits = USART_STOP_BIT_1;

usartConfigStruct.wordLength = USART_WORD_LEN_8B;

usartConfigStruct.hardwareFlow = USART_HARDWARE_FLOW_NONE;

4.2.2 Enable CRC peripheral clock

Before starting to use CRC, the CRC peripheral clock shall be enabled through

RCM_EnableAHB1PeriphClock(RCM_AHB1_PERIPH_CRC);

Document No.: AN1101

www.geehy.com Page 11

the RCM peripheral.

4.2.3 Configure initial CRC value

Set the RST bit of CRC_CTRL register to 1, configure the initial CRC value

register (CRC_DATA), and set the CRC data register to the initial CRC value

0xFFFFFFF.

4.2.4 CRC data check

After the clock is enabled and the initial value is configured, call the CRC

calculation function, and use the while loop to write data to the data register in 32

bits. When BUFFER_SIZE is equal to zero, it means that the data has been

written; read the value of the data register and obtain the output check value. The

standard check value and output check value can be observed through the serial

assistant. When the output check value is equal to the standard check value, it

proves that there is no error in data transmission.

The 32-bit data, as an input register, is new data stored in the CRC calculator

during writing. As an output register, it returns the results of CRC computing when

reading.

 The function code of CRC_CalcBlockCRC is as follows:

CRC_ResetDATA();

CRC_ResetDATA();

uCRCValue=CRC_CalculateBlockCRC((uint32_t*)aDataBuffer,BUFFER_SIZE);

printf("BlockCRC = 0x379E9F06 \r\n");

printf("CalculateBlockCRC = 0x%08X \r\n", uCRCValue);

uint32_t CRC_CalculateBlockCRC(uint32_t *buf, uint32_t bufLen)

{

while(bufLen--)

{

CRC->DATA = *buf++;

}

return (CRC->DATA);

}

Document No.: AN1101

www.geehy.com Page 12

 Revision history

Table 2 Document Version History

Date Version Revision History

July 5, 2023 1.0 First draft

Document No.: AN1101

www.geehy.com Page 13

Statement

This manual is formulated and published by Zhuhai Geehy Semiconductor Co., Ltd.

(hereinafter referred to as "Geehy"). The contents in this manual are protected by laws and

regulations of trademark, copyright and software copyright. Geehy reserves the right to

correct and modify this manual at any time. Please read this manual carefully before using

the product. Once you use the product, it means that you (hereinafter referred to as the

"users") have known and accepted all the contents of this manual. Users shall use the

product in accordance with relevant laws and regulations and the requirements of this

manual.

1. Ownership of rights

This manual can only be used in combination with chip products and software products of

corresponding models provided by Geehy. Without the prior permission of Geehy, no unit

or individual may copy, transcribe, modify, edit or disseminate all or part of the contents of

this manual for any reason or in any form.

The "Geehy" or "Geehy" words or graphics with "®" or "TM" in this manual are trademarks

of Geehy. Other product or service names displayed on Geehy products are the property

of their respective owners.

2. No intellectual property license

Geehy owns all rights, ownership and intellectual property rights involved in this manual.

Geehy shall not be deemed to grant the license or right of any intellectual property to users

explicitly or implicitly due to the sale and distribution of Geehy products and this manual.

If any third party’s products, services or intellectual property are involved in this manual, it

shall not be deemed that Geehy authorizes users to use the aforesaid third party’s products,

services or intellectual property, unless otherwise agreed in sales order or sales contract

of Geehy.

3. Version update

Users can obtain the latest manual of the corresponding products when ordering Geehy

products.

Document No.: AN1101

www.geehy.com Page 14

If the contents in this manual are inconsistent with Geehy products, the agreement in

Geehy sales order or sales contract shall prevail.

4. Information reliability

The relevant data in this manual are obtained from batch test by Geehy Laboratory or

cooperative third-party testing organization. However, clerical errors in correction or errors

caused by differences in testing environment may occur inevitably. Therefore, users should

understand that Geehy does not bear any responsibility for such errors that may occur in

this manual. The relevant data in this manual are only used to guide users as performance

parameter reference and do not constitute Geehy's guarantee for any product performance.

Users shall select appropriate Geehy products according to their own needs, and

effectively verify and test the applicability of Geehy products to confirm that Geehy products

meet their own needs, corresponding standards, safety or other reliability requirements. If

loses are caused to users due to the user's failure to fully verify and test Geehy products,

Geehy will not bear any responsibility.

5. Compliance requirements

Users shall abide by all applicable local laws and regulations when using this manual and

the matching Geehy products. Users shall understand that the products may be restricted

by the export, re-export or other laws of the countries of the product suppliers, Geehy,

Geehy distributors and users. Users (on behalf of itself, subsidiaries and affiliated

enterprises) shall agree and promise to abide by all applicable laws and regulations on the

export and re-export of Geehy products and/or technologies and direct products.

6. Disclaimer

This manual is provided by Geehy "as is". To the extent permitted by applicable laws,

Geehy does not provide any form of express or implied warranty, including without

limitation the warranty of product merchantability and applicability of specific purposes.

Geehy will bear no responsibility for any disputes arising from the subsequent design and

use of Geehy products by users.

7. Limitation of liability

Document No.: AN1101

www.geehy.com Page 15

In any case, unless required by applicable laws or agreed in writing, Geehy and/or any

third party providing this manual "as is" shall not be liable for damages, including any

general damages, special direct, indirect or collateral damages arising from the use or no

use of the information in this manual (including without limitation data loss or inaccuracy,

or losses suffered by users or third parties).

8. Scope of application

The information in this manual replaces the information provided in all previous versions

of the manual.

©2022 Zhuhai Geehy Semiconductor Co., Ltd. - All Rights Reserved

