
Document No.: AN1103

w w w. g e e h y. c o m P a g e 0

Application Note

Application Note

Document No.: AN1103

The APM32F103 software simulates SPI to

read and write external Flash

Version: V1.0

Document No.: AN1103

w w w. g e e h y. c o m P a g e 1

1 Introduction

This application note provides how to simulate SPI to read and write external Flash through the

software on the APM32F103 series. The purpose is to avoid the problem of limited serial

communication ports in the development process. At the same time, it can also reduce the cost

of development boards and the PCB complexity. The content of this document is developed

based on the APM32F103 series.

Document No.: AN1103

w w w. g e e h y. c o m P a g e 2

Contents

1 Introduction ... 1

2 Introduction to APM32F103 SPI ... 3

2.1 Introduction to SPI ... 3

2.2 SPI transmission mode ... 4

2.3 Exchange of data .. 5

3 SPI implementation mode .. 7

3.1 Hardware SPI .. 7

3.2 GPIO simulating SPI ... 7

4 Introduction to Flash .. 8

4.1 Introduction to W25Q64 .. 8

5 Routine of APM32F103 GPIO Simulating SPI to Read and Write External

Flash ... 10

5.1 Hardware design ... 10

5.2 Software design ... 11

6 Revision history .. 25

Document No.: AN1103

w w w. g e e h y. c o m P a g e 3

2 Introduction to APM32F103 SPI

The full name of SPI is Serial Peripheral Interface. SPI is usually used between devices such as

EEPROM, Flash, and OLED. APM32F103 SPI can be configured to support SPI protocol and

I2S audio protocol. It works in SPI mode by default. SPI provides data transmitting and

receiving functions based on SPI protocol, which allows chips to communicate with external

devices in half duplex, full duplex, synchronous and serial modes, and can work in master or

slave mode.

2.1 Introduction to SPI

SPI is usually composed of four lines: MOSI (Master Output Slave Input), MISO (Master Input

Slave Output), SCLK (Serial Clock), and CS (Chip Select), as shown in Figure 1:

SPI

SCK

MISO

MOSI

NSS(CS)

Master device: SPI clock output

Slave device: SPI clock input

Master device: Input the pin and

receive data

Slave device: Output the pin and

transmit data

Data direction: From slave device

to master device

Master device: Output the pin and

transmit data

Slave device: Input the pin and

receive data

Data direction: From master device

to slave device

Software NSS mode: NSS pin can
be used for other purposes

NSS mode of master device

hardware: NSS output, single

master mode

NSS OFF output: Operation of multiple

master environments is allowed

Slave hardware NSS mode: The NSS

signal is set to low as the chip

selection signal of the slave

Figure 1 Introduction Diagram of Four Lines of SPI

Document No.: AN1103

w w w. g e e h y. c o m P a g e 4

2.2 SPI transmission mode

SPI has four transmission modes, and their main difference is CPOL (clock polarity) and CPHA

(clock phase) of the CTRL1 register. CPOL means the level signal of SCK signal line when SPI

is in idle state. CPHA means the sampling moment of data. SPI can be divided into four modes

according to their states, as shown in Figure 2:

SPI transmission

mode

0

1

2

3

CPOL=0

CPHA=0

Odd edge sampling

SCK clock idle level

is low

CPOL=0

CPHA=1

Odd edge sampling

SCK clock idle level

is high

CPOL=1
CPHA=0

Even edge sampling

SCK clock idle level is

low

CPOL=1

CPHA=0

CPOL=1

CPHA=1

Even edge sampling

SCK clock idle level

is high

Figure 2 SPI Transmission Mode

According to the above figure, when CPHA=0, it means that data sampling will begin at the first

clock edge. When CPOL=0, it means that the SCK clock is at low level when it is idle, and when

it changes from low level to high level, sampling will be conducted on the rising edge. On the

contrary, when CPOL=1, it means that the SCK clock is at high level when it is idle, and changes

from high level to low level, and sampling will be conducted on the falling edge, as shown in

Figure 3:

Document No.: AN1103

w w w. g e e h y. c o m P a g e 5

CPOL=1

CPOL=0

MOSI

MISO

NSS

（to slave）

Capture Strobe

Figure 3 SPI Transmission Timing Diagram

When CPHA=1, it means that data sampling will begin at the second clock edge. When

CPOL=0, it means that the SCK clock is at low level when it is idle, and when it changes from

low level to high level, and then changes to low level, sampling will be conducted on the rising

edge. On the contrary, when CPOL=1, it means that the SCK clock is at high level when it is

idle, and changes from high level to low level, and then changes to high level, sampling will be

conducted on the falling edge, as shown in Figure 4:

CPOL=1

CPOL=0

MOSI

MISO

NSS

（to slave）

Capture Strobe

Figure 4 SPI Transmission Timing Diagram

2.3 Exchange of data

During the SCK clock cycle, both MOSI and MISO are in working state, as shown in Figure 5:

Document No.: AN1103

w w w. g e e h y. c o m P a g e 6

1 2 3 4 5 6 70 1 2 3 4 5 6 70

MOSI

MISO

SCK

Master Slave

Shift register Shift register

Figure 5 Data Exchange Diagram

As shown above, in SPI communication, both the master and slave have their own shift

registers, which are used for data transmission. During transmission, the function of MOSI is to

write data from the master shift register to the slave shift register, while the function of MISO is

to transmit data from the slave shift register to the master shift register for data exchange.

Document No.: AN1103

w w w. g e e h y. c o m P a g e 7

3 SPI implementation mode

3.1 Hardware SPI

The APM32F103 series development board is a hardware SPI with its own hardware circuit. In

the communication process, it relies on the built-in SPI peripheral, and the data transmission

process is directly managed by the hardware, not needing additional programming to control

each step of the SPI communication process.

3.1.1 Advantages and disadvantages of hardware SPI

Advantages:

(1) It can provide higher communication speed and consistency

(2) It can achieve higher communication modes, such as DMA transmission mode, interrupt

handling mode, and master mode.

(3) Low code complexity, easy operation.

Disadvantages:

(1) The configuration and functions of hardware SPI are fixed and not easy to modify.

(2) The hardware SPI relies on specific hardware controller, and there is a compatibility

problem in development of different platforms.

3.2 GPIO simulating SPI

In the development process, in order to avoid obstruction of development due to insufficient

hardware SPI, the communication process of simulating SPI can be achieved through GPIO

port and software control.

3.2.1 Advantages and disadvantages of GPIO simulating SPI

Advantages:

(1) The GPIO pin configuration is flexible, and the GPIO pins in the development board

can be selected arbitrarily for simulation operation.

(2) With low cost, software simulating SPI does not require additional hardware design,

and only GPIO pins are required.

Disadvantages:

(1) Low communication speed due to the processing capacity of the MCU.

(2) The code complexity is high and more resources are required.

Document No.: AN1103

w w w. g e e h y. c o m P a g e 8

4 Introduction to Flash

The full name of Flash is Flash Memory Controller. FLASH is usually used to store program

codes, data and other information. Flash includes internal Flash and external Flash. The

W25Q64 module used in this article is an external Flash module with SPI interface. During

operation, the codes stored in Flash will not be modified, and Flash operates according to

sectors.

Flash usually requires erase operation before writing data. It is because when Flash needs to

write data, it cannot be directly modified on the sector that has already been programmed.

Instead, it needs to erase the entire sector to the initial state and then perform the write

operation.

4.1 Introduction to W25Q64

W25Q64 is a flash memory chip based on the peripheral interface (SPI), has 8Mbyte storage

space and is a high-capacity SPI Flash product. W25Q64 divides the 8M byte capacity into 128

blocks, each with a size of 64K, and each block is further divided into 16 sectors, each with a

size of 4K. The minimum erasing unit of W25Q64 is the sector, and a buffer of at least 4K needs

to be opened up for it.

4.1.1 Common Command Instructions of W25Q64

By sending instructions to W25Q64 through SPI, W25Q64 can be operated. Some instruction

lists used in the operations in this document are shown in Table 1:

Data Input

Output
Byte1 Byte2 Byte3 Byte4 Byte5 Byte6 Byte7 Byte8

Number of

Clock
8 8 8 8 8 8 8 8

Write Enable 06h —

Write Disable 04h —

Volatile SR

Write Enable
50h —

Read Data 03h A23-A16 A15-A8 A7-A0 （D7-D0） —

Page Program 02h A23-A16 A15-A8 A7-A0 （D7-D0） —

Sector Erase

（4KB）
20h A23-A16 A15-A8 A7-A0 —

Block Erase

（32KB）
52h A23-A16 A15-A8 A7-A0 —

Block Erase

（64KB）
D8h A23-A16 A15-A8 A7-A0 —

Table 1 Common Operation Commands of W25Q64

In page programming operation, first pull down the CS (chip selector). In the following 8 clock

Document No.: AN1103

w w w. g e e h y. c o m P a g e 9

cycles, the instruction 0x02 is issued by DI, and then in the next 24 clock cycles, a 24Bit

address will be sent. In the last 256*8 clock cycles, 256Byte data will be sent. The timing

diagram is shown in Figure 6:

CS

CLK

Mode3

Mode0
0 1 2 3 4 5 6 7 8 9 10 28 29 30 31 35 36 3732 33 34 38 39

23 22 21 3

...

2 1 0 13 2 07 6 5 4DIO

Instruction 02h 24-Bit Address Data Byte 1

CS

42 43 44 45 46 47 2074 2075 20762072 2073 207740 41 2078 2079
CLK

24 3 16 5

Data Byte 2

7 0 24 3 16 5

Data Byte 256

7
0

* = MSB

*
*

* *

Figure 6 W25Q64 Command Operation Diagram

4.1.2 Advantages and disadvantages of W25Q64

Advantages:

(1) Large storage space

(2) It supports high-speed serial read and write operations and has a high data

transmission rate

(3) Low power

(4) SPI interface is adopted for communication, making it easy to connect and control.

Disadvantages:

(1) High price

(2) Limited service life

(3) Slow erase operation

Document No.: AN1103

w w w. g e e h y. c o m P a g e 10

5 Routine of APM32F103 GPIO Simulating SPI to Read and

Write External Flash

5.1 Hardware design

Hardware design required for this experiment:

(1) External Flash module

(2) USB-to-TTL line

The external Flash module uses the W25Q64 model, and the hardware wiring diagram of the

W25Q64 module and the APM32F103 development board is shown in Figure 7:

VCC

PE2

PA6

GND

PA5

PA7

VCC

CS

DO

GND

CLK

DI

APM32F1xx W25Q64

Figure 7 Hardware Wiring Diagram

The GPIO pins used for the USB-to-TTL cable are PA9 and PA10, and the USB-to-TTL line is

used for data receiving and transmission. The schematic diagram is shown in Figure 8:

Document No.: AN1103

w w w. g e e h y. c o m P a g e 11

Figure 8 USART Wiring Schematic Diagram

5.2 Software design

To implement GPIO simulating PI to read and write external Flash through APM32F103, the ID

information of the external Flash shall be configured according to the module model, the GPIO

pin configuration design and SPI communication timing shall be completed, then the read and

write operations can be performed, and the results of the read and write operations can be

output. The code implementation flow chart is shown in Figure 9:

Document No.: AN1103

w w w. g e e h y. c o m P a g e 12

Start

USART、LED、GPIO

Init

Is the reading of

W25Q64ID consistent

with the expected ID

LED3 On
False

GPIO Analog SPI

Communication Read/

Write External Flash

True

Record and determine

whether reading and writing

are correct

LED2 Toggle

USART Print erased

LED2 On

USART Print not well

erased

Same

Different

Figure 9 Main Program Flow Chart

5.2.1 SGPIO pin configuration

For the GPIO pins used to simulate SPI, configure the SCK, CS, and MOSI pins as push-pull

output mode, and MISO as pull-down input mode. The reference codes are as follows:

void SPI_Init（void）

{

Document No.: AN1103

w w w. g e e h y. c o m P a g e 13

 GPIO_Config_T GPIO_ConfigStruct;

 RCM_EnableAPB2PeriphClock（RCM_APB2_PERIPH_GPIOA）;

 RCM_EnableAPB2PeriphClock（RCM_APB2_PERIPH_GPIOE）;

 GPIO_ConfigStruct.pin = sFLASH_CS_PIN ;

 GPIO_ConfigStruct.mode = GPIO_MODE_OUT_PP;

 GPIO_ConfigStruct.speed = GPIO_SPEED_2MHz;

 GPIO_Config（GPIOE, &GPIO_ConfigStruct）; // SCK CS MOSI Output

 GPIO_ConfigStruct.pin = sFLASH_SPI_SCK_PIN | sFLASH_SPI_MOSI_PIN ;

 GPIO_ConfigStruct.mode = GPIO_MODE_OUT_PP;

 GPIO_ConfigStruct.speed = GPIO_SPEED_2MHz;

 GPIO_Config（GPIOA, &GPIO_ConfigStruct）; // SCK CS MOSI Output

 GPIO_ConfigStruct.pin = sFLASH_SPI_MISO_PIN;

 GPIO_ConfigStruct.mode = GPIO_MODE_IN_FLOATING;

 GPIO_ConfigStruct.speed = GPIO_SPEED_2MHz;

 GPIO_Config（GPIOA, &GPIO_ConfigStruct）; // MISO Input

 sFLASH_CS_HIGH; // CS Init High

 sFLASH_SCK_LOW; // SCK Init Low

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 14

5.2.2 Simulate read and write operations of SPI timing

As shown in the above Figure 5 错误!未找到引用源。, the transmission of SPI can be regarded

as a virtual ring topology, indicating that the input and output are conducted at the same time.

After the master transmits a clock signal and pulls down the chip selection signal, select the

slave to transmit. According to the introduction of Figure 2 错误!未找到引用源。and Figure 3 错

误!未找到引用源。, SPI mode 0 is selected here, the clock is at low level in idle state, and the

data is collected at the rising edge and moved out at the falling edge. The reference codes are

as follows:

uint8_t sFLASH_TxRxOneByte（uint8_t byte）

{

 uint8_t temp = 0;

 uint8_t rx_data = 0xFF;

 for（uint8_t j=0;j<8;j++）

 {

 temp = （（byte&0x80）==0x80）? 1:0;

 byte = byte<<1;

 rx_data = rx_data<<1;

 sFLASH_SCK_LOW;

 if（temp == 1）

 {

 sFLASH_MOSI_HIGH;

 }

 else

 {

 sFLASH_MOSI_LOW;

 }

 Delay（10）;

 sFLASH_SCK_HIGH;

 Delay（10）;

 if（sFLASH_MISO_READ == 1）

 {

 rx_data = rx_data + 1;

 }

 }

 sFLASH_SCK_LOW;

 return rx_data;

}

According to the codes, it is learned that:

(1) Each time a Byte is read and written, it will be cycled for 8 times, and a Bit is received

and transmitted each time. In the circle, the most significant bit of Byte is stored in the

Document No.: AN1103

w w w. g e e h y. c o m P a g e 15

temp variable each time;

(2) After the most significant bit of Byte is stored, the second most significant bit of Byte will

become the most significant bit. The operation performed here is to move Byte to the

left by one bit.

(3) Move rx_data to the right by one bit, move the least significant bit, and after 8 cycles,

rx_data will put the high bit in front.

(4) Then the idle level of the clock is set to low by pulling down the clock line.

(5) At the same time, set the relevant pin level of the MOSI according to the value stored in

the temp variable at the current most significant bit of Byte.

(6) Then set the idle level of the clock to high by pulling up the clock line. Then, starting

from the device, read the data transmitted by the MOSI and write the read data to the

MISO.

(7) The least significant bit in the rx_data variable is used to store the data read on MISO.

(8) After reading and writing the SPI, set the idle level of the clock to low, pull down the

clock line, and then the SPI enters the idle state.

Document No.: AN1103

w w w. g e e h y. c o m P a g e 16

5.2.3 W25Q64 device information read operation

W25Q64 mainly has three IDs: Manufacturer ID, Device ID, and Unique ID. The manufacturer

ID is produced by Winbond, and its value MF [7:0] is 0xEF. The device ID consists of two parts,

ID [15:0] is the chip type and 0x4017. ID [7:0] is the storage capacity. The unique ID indicates

the uniqueness of the chip and is commonly used for encryption. The introduction of the

W25Q64 ID content is shown in Table 2. Operate the development board to read the W25Q64

ID as shown in Table 3:

Type And Instruct Address Content and Operation Instruction

MANUFACTURER ID （MF7-MF0）
-

Winbond Serial Flash EFh

Device ID （ID7-ID0） （ID15-ID0）

Instruction ABh,90h,92h,94h 9Fh

W25Q64JV-IQ/JQ 16h 4017h

Table 2 Introduction to W25Q64 ID Content

Read Type Instruct Address Content

Release Power-down/ID ABh Dummy Dummy Dummy （ID7-ID0） -

Manufacturer/Device ID 90h Dummy Dummy 00h
（MF7-

MF0）
（ID7-ID0）

JEDEC ID 9Fh
（MF7-

MF0）

（ID15-

ID8）

（ID7-

ID0）
- -

Read Unique ID 4Bh Dummy Dummy Dummy Dummy （UID63-0）

Table 3 W25Q64 Reading ID Operation Instructions

In the code implementation process, use the 0xAB instruction to obtain the device ID [7:0] and

use the 0x9F instruction to obtain the JEDEC ID (MF [7:0] + ID [15:0]). In the implementation

process, first pull down the/CS pin, and then send "ABh" and "9Fh" to the chip through DI. After

"ABh" is sent, there will be a time interval of tRES1, and then the chip will resume normal

operation. It is invalid to execute this instruction during the execution cycle of programming,

erasing, and writing status register instructions. After "9Fh" is sent, information of the three IDs

will be sent out from the DO pin on the falling edge of SCK. The reference codes are as follows:

uint32_t sFLASH_ReadDeviceID（void）

{

 uint32_t Temp[4];

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（0xAB）;

 Temp[0] = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 Temp[1] = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 Temp[2] = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 Temp[3] = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 sFLASH_CS_HIGH;

Document No.: AN1103

w w w. g e e h y. c o m P a g e 17

 return Temp[3];

}

uint32_t sFLASH_ReadID（void）

{

 uint32_t Temp = 0, Temp0 = 0, Temp1 = 0, Temp2 = 0;

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（0x9F）;

 Temp0 = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 Temp1 = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 Temp2 = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 sFLASH_CS_HIGH;

 Temp = （Temp0 << 16） | （Temp1 << 8） | Temp2;

 return Temp;

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 18

5.2.4 Sector erase operation

According to 错误!未找到引用源。 when the 0xD8 instruction is sent, a 24-bit sector address is

sent to erase all sector contents in the entire block. After erasing, all bytes become "FFh". The

reference codes are as follows:

void sFLASH_SectorErase（uint32_t SectorAddr）

{

 sFLASH_WriteEnable（）;

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（0xD8）;

 sFLASH_TxRxOneByte（（SectorAddr & 0xFF0000） >> 16）;

 sFLASH_TxRxOneByte（（SectorAddr & 0xFF00） >> 8）;

 sFLASH_TxRxOneByte（SectorAddr & 0xFF）;

 sFLASH_CS_HIGH;

 /* Wait FLASH completed */

 sFLASH_WaitForWriteEnd（）;

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 19

5.2.5 Page write data operation

W25Q64 can only write data by page, with 256 bytes per page, and a maximum of 256 bytes

can be written at a time. According to 错误!未找到引用源。 when writing data, first send the

0x02 instruction, and then send a 24-bit sector address to perform the write operation on the

sector. The reference codes are as follows:

void sFLASH_PageProgram（uint8_t* pBuffer, uint32_t WriteAddr, uint16_t NumByteToWrite）

{

 sFLASH_WriteEnable（）;

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（sFLASH_CMD_WRITE）;

 sFLASH_TxRxOneByte（（WriteAddr & 0xFF0000） >> 16）;

 sFLASH_TxRxOneByte（（WriteAddr & 0xFF00） >> 8）;

 sFLASH_TxRxOneByte（WriteAddr & 0xFF）;

 while （NumByteToWrite--）

 {

 sFLASH_TxRxOneByte（*pBuffer）;

 pBuffer++;

 }

 sFLASH_CS_HIGH;

 sFLASH_WaitForWriteEnd（）;

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 20

5.2.6 Read data operation

According to 错误!未找到引用源。 when reading data, first send the 0x03 instruction, and then

send a 24-bit sector address to perform read operation on the sector. The reference codes are

as follows:

void sFLASH_ReadData（uint8_t* pBuffer, uint32_t ReadAddr, uint16_t NumByteToRead）

{

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（sFLASH_CMD_READ）;

 sFLASH_TxRxOneByte（（ReadAddr & 0xFF0000） >> 16）;

 sFLASH_TxRxOneByte（（ReadAddr& 0xFF00） >> 8）;

 sFLASH_TxRxOneByte（ReadAddr & 0xFF）;

 while （NumByteToRead--）

 {

 *pBuffer = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 pBuffer++;

 }

 sFLASH_CS_HIGH;

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 21

5.2.7 Wait for Flash to complete write operation

W25Q64 has three status registers, and bit [0] represents the erase/write status flag bit.

According to 错误!未找到引用源。 when the write or read operation is over, judge the status

register and send "05h" data to obtain the data of the status register. When the value of the

status register bit [0] is 1, erase or write operation is still ongoing. When this bit is 0, it indicates

that no operation is being performed and erase or write can be performed on W25Q64. The

reference codes are as follows:

void sFLASH_WaitForWriteEnd（void）

{

 uint8_t flashstatus = 0;

 sFLASH_CS_LOW;

 sFLASH_TxRxOneByte（0x05）;

 do

 {

 flashstatus = sFLASH_TxRxOneByte（sFLASH_DUMMY_BYTE）;

 }

 while （（flashstatus & sFLASH_WIP_FLAG） == SET）;

 sFLASH_CS_HIGH;

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 22

5.2.8 Main function logical operation

Function introduction of this routine: After the program is downloaded, initialize and enable the

pins of the light, serial port, and GPIO analog SPI. After that, perform read operation on the

FlashID and DeviceID. After reading is completed, they will enter different states based on the

judgment conditions. If the value read by FlashID is consistent with the defined ID, Flash will

perform read and write operation. If they are inconsistent, LED3 will be normally on. In the

read/write operation of Flash, before entering the write operation, perform an erase operation,

and then data will be read and written respectively. After the operation is completed, compare

the read and written data and put them in the variable 1. After that, perform an erase operation

and then perform a read operation, compare with OXFF, and place the comparison in variable 2

to determine whether the erase operation is successful. Finally, compare the results of variables

one by one, and the serial port and light will give different outputs. The reference codes are as

follows:

int main（void）

{

 USART_Config_T usartConfig;

 APM_MINI_LEDInit（LED2）;

 APM_MINI_LEDInit（LED3）;

 APM_MINI_LEDOff（LED2）;

 APM_MINI_LEDOff（LED3）;

 usartConfig.baudRate = 115200;

 usartConfig.mode = USART_MODE_TX_RX;

 usartConfig.parity = USART_PARITY_NONE;

 usartConfig.stopBits = USART_STOP_BIT_1;

 usartConfig.wordLength = USART_WORD_LEN_8B;

 usartConfig.hardwareFlow = USART_HARDWARE_FLOW_NONE;

 APM_MINI_COMInit（COM1,&usartConfig）;

 //Init SPI GPIO

 SPI_Init（）;

 // Read SPI Device ID

 DeviceID = sFLASH_ReadDeviceID（）;

 /* Read SPI Flash ID */

 FlashID = sFLASH_ReadID（）;

 printf（"Device ID: 0x%x\r\n",DeviceID）;

 printf（"Flash ID: 0x%x\r\n",FlashID）;

 //whether is flash id

 if （FlashID == sFLASH_ID）

Document No.: AN1103

w w w. g e e h y. c o m P a g e 23

 {

 APM_MINI_LEDOn（LED2）;

 //erase exist

 sFLASH_SectorErase（FLASH_SectorToErase）;

 //write data

 sFLASH_PageProgram（Tx_Buffer, FLASH_WriteAddress, BufferSize）;

 //read data

 sFLASH_ReadData（Rx_Buffer, FLASH_ReadAddress, BufferSize）;

 //compare write and read

 TransferStatus1 = Buffercmp（Tx_Buffer, Rx_Buffer, BufferSize）;

 //erase operate

 sFLASH_SectorErase（FLASH_SectorToErase）;

 //read again for check whether erase success

 sFLASH_ReadData（Rx_Buffer, FLASH_ReadAddress, BufferSize）;

 //compare

 for （Index = 0; Index < BufferSize; Index++）

 {

 if （Rx_Buffer[Index] != 0xFF）

 {

 TransferStatus2 = FAILED;

 }

 }

 }

 //if not flash id ,led3 on

 else

 {

 APM_MINI_LEDOn（LED3）;

 }

 //if erase success

 if（TransferStatus2 == PASSED）

 {

 printf（"the specified sector part is erased!!!\r\n"）;

 }//not erase success

 else{

 printf（"the specified sector part is not well erased!!!\r\n"）;

 }

 while（1）

 {

 //compare for write and read whether same

 if（TransferStatus1 == PASSED）

 {

 APM_MINI_LEDToggle（LED2）;

 }

Document No.: AN1103

w w w. g e e h y. c o m P a g e 24

 Delay（0xfffff）;

 }

}

Document No.: AN1103

w w w. g e e h y. c o m P a g e 25

6 Revision history

Table 4 Document Revision History

Date Version Revision History

August 29, 2023 1.0 New edition

Document No.: AN1103

w w w. g e e h y. c o m P a g e 26

Statement

This document is formulated and published by Geehy Semiconductor Co., Ltd. (hereinafter referred to as

“Geehy”). The contents in this document are protected by laws and regulations of trademark, copyright

and software copyright. Geehy reserves the right to make corrections and modifications to this document

at any time. Please read this document carefully before using Geehy products. Once you use the Geehy

product, it means that you (hereinafter referred to as the “users”) have known and accepted all the contents

of this document. Users shall use the Geehy product in accordance with relevant laws and regulations and

the requirements of this document.

1. Ownership

This document can only be used in connection with the corresponding chip products or software products

provided by Geehy. Without the prior permission of Geehy, no unit or individual may copy, transcribe,

modify, edit or disseminate all or part of the contents of this document for any reason or in any form.

The “极海” or “Geehy” words or graphics with “®” or “TM” in this document are trademarks of Geehy. Other

product or service names displayed on Geehy products are the property of their respective owners.

2. No Intellectual Property License

Geehy owns all rights, ownership and intellectual property rights involved in this document.

Geehy shall not be deemed to grant the license or right of any intellectual property to users explicitly or

implicitly due to the sale or distribution of Geehy products or this document.

If any third party’s products, services or intellectual property are involved in this document, it shall not be

deemed that Geehy authorizes users to use the aforesaid third party’s products, services or intellectual

property, unless otherwise agreed in sales order or sales contract.

3. version update

Users can obtain the latest document of the corresponding models when ordering geehy products.

If the contents in this document are inconsistent with geehy products, the agreement in thesales order or

the sales contract shall prevail.

4. information reliability

The relevant data in this document are obtained from batch test by geehy laboratory or cooperative third-

party testing organization. However, clerical errors in correction or errors caused by differences in testing

environment may occur inevitably. Therefore, users should understand that geehy does not bear any

Document No.: AN1103

w w w. g e e h y. c o m P a g e 27

responsibility for such errors that may occur in this document. The relevant data in this document are only

used to guide users as performance parameter reference and do not constitute geehy’s guarantee for any

product performance.

Users shall select appropriate geehy products according to their own needs, and effectively verify and test

the applicability of geehy products to confirm that geehy products meet their own needs, corresponding

standards, safety or other reliability requirements. If loses are caused to users due to the user’s failure to

fully verify and test geehy products, geehy will not bear any responsibility.

5. legality

Users shall abide by all applicable local laws and regulations when using this document and the

matching geehy products. Users shall understand that the products may be restricted by the export, re-

export or other laws of the countiries of the products suppliers, geehy, geehy distributors and users.

Users (on behalf or itself, subsidiaries and affiliated enterprises) shall agree and promise to abide by all

applicable laws and regulations on the export and re-export of geehy products and/or technologies and

direct products.

6. disclaimer of warranty

This document is provided by geehy "as is" and there is no warranty of any kind, either expressed or

implied, including, but not limited to, the warranties of merchantability and fitness for a particular purpose,

to the extent permitted by applicable law.

Geehy will bear no responsibility for any disputes arising from the subsequent design or use by users.

7. limitation of liability

In no event unless required by applicable law or agreed to in writing will geehy or any other party who

provide the document "as is", be liable for damages, including any general, special, direct, incidental or

consequential damages arising out of the use or inability to use the document (including but not limited to

loss of data or data being rendered inaccurate or losses sustained by users or third parties).

8. scope of application

The information in this document replaces the information provided in all previous versions of the document.

© 2022 geehy semiconductor co., ltd. - all rights reserved

